Weinberg bounds over nonspherical graphs

نویسندگان

  • Beifang Chen
  • Jin Ho Kwak
  • Serge Lawrencenko
چکیده

Let   G Aut and  E G   denote the automorphism group and the edge set of a graph  G, respectively. Weinberg’s Theorem states that 4 is a constant sharp upper bound on the ratio     G E G Aut over planar (or spherical) 3-connected graphs  G. We have obtained various analogues of this theorem for nonspherical graphs, introducing two Weinberg-type bounds for an arbitrary closed surface  , namely:         G E G W W G T P Aut sup and def    , where supremum is taken over the polyhedral graphs  G with respect to   for  WP    and over the graphs  G triangulating   for  WT   . We have proved that Weinberg bounds are finite for any surface; in particular:  WP WT  48 for the projective plane, and  WT  240 for the torus. We have also proved that the original Weinberg bound of 4 holds over the graphs  G triangulating the projective plane with at least 8 vertices and, in general, for the graphs of sufficiently large order triangulating a fixed closed surface  .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

The minus k-domination numbers in graphs

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

متن کامل

Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...

متن کامل

New bounds on proximity and remoteness in graphs

The average distance of a vertex $v$ of a connected graph $G$is the arithmetic mean of the distances from $v$ to allother vertices of $G$. The proximity $pi(G)$ and the remoteness $rho(G)$of $G$ are defined as the minimum and maximum averagedistance of the vertices of $G$. In this paper we investigate the difference between proximity or remoteness and the classical distanceparameters diameter a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2000